Пассивация алюминия азотной кислотой

Содержание

Пассивация алюминия азотной кислотой

Пассивация алюминия азотной кислотой

Алюминий — амфотерный металл. Электронная конфигурация атома алюминия 1s22s22p63s23p1. Таким образом, на внешнем электронном слое у него находятся три валентных электрона: 2 — на 3s- и 1 — на 3p-подуровне.

В связи с таким строением для него характерны реакции, в результате которых атом алюминия теряет три электрона с внешнего уровня и приобретает степень окисления +3.

Алюминий является высокоактивным металлом и проявляет очень сильные восстановительные свойства.

с кислородом

При контакте абсолютно чистого алюминия с воздухом атомы алюминия, находящиеся в поверхностном слое, мгновенно взаимодействуют с кислородом воздуха и образуют тончайшую, толщиной в несколько десятков атомарных слоев, прочную оксидную пленку состава Al2O3, которая защищает алюминий от дальнейшего окисления. Невозможно и окисление крупных образцов алюминия даже при очень высоких температурах. Тем не менее, мелкодисперсный порошок алюминия довольно легко сгорает в пламени горелки:

4Аl + 3О2 = 2Аl2О3

с галогенами

Алюминий очень энергично реагирует со всеми галогенами.

Так, реакция между перемешанными порошками алюминия и йода протекает уже при комнатной температуре после добавления капли воды в качестве катализатора. Уравнение взаимодействия йода с алюминием:

2Al + 3I2 =2AlI3

С бромом, представляющим собой тёмно-бурую жидкость, алюминий также реагирует без нагревания. Образец алюминия достаточно просто внести в жидкий бром: тут же начинается бурная реакция с выделением большого количества тепла и света:

2Al + 3Br2 = 2AlBr3

Реакция между алюминием и хлором протекает при внесении нагретой алюминиевой фольги или мелкодисперсного порошка алюминия в заполненную хлором колбу. Алюминий эффектно сгорает в хлоре в соответствии с уравнением:

2Al + 3Cl2 = 2AlCl3

с серой

При нагревании до 150-200 оС или после поджигания смеси порошкообразных алюминия и серы между ними начинается интенсивная экзотермическая реакция с выделением света:

— сульфид алюминия

с азотом

При взаимодействии алюминия с азотом при температуре около 800 oC образуется нитрид алюминия:

с углеродом

При температуре около 2000oC алюминий взаимодействует с углеродом и образует карбид (метанид) алюминия, содержащий углерод в степени окисления -4, как в метане.

с водой

Как уже было сказано выше, стойкая и прочная оксидная пленка из Al2O3 не дает алюминию окисляться на воздухе. Эта же защитная оксидная пленка делает алюминий инертным и по отношению к воде.

При снятии защитной оксидной пленки с поверхности такими методами, как обработка водными растворами щелочи, хлорида аммония или солей ртути (амальгирование), алюминий начинает энергично реагировать с водой с образованием гидроксида алюминия и газообразного водорода:

2Al + 6H2O = 2Al(OH)3 + 3H2↑

с оксидами металлов

После поджигания смеси алюминия с оксидами менее активных металлов (правее алюминия в ряду активности) начинается крайне бурная сильно-экзотермическая реакция.

Так, в случае взаимодействия алюминия с оксидом железа (III) развивается температура 2500-3000оС.

В результате этой реакции образуется высокочистое расплавленное железо:

2AI + Fe2O3 = 2Fe + Аl2О3

Данный метод получения металлов из их оксидов путем восстановления алюминием называется алюмотермией или алюминотермией.

с кислотами-неокислителями

Взаимодействие алюминия с кислотами-неокислителями, т.е. практически всеми кислотами, кроме концентрированной серной и азотной кислот, приводит к образованию соли алюминия соответствующей кислоты и газообразного водорода:

а) 2Аl + 3Н2SO4(разб.) = Аl2(SO4)3 + 3H2↑

2Аl0 + 6Н+ = 2Аl3+ + 3H20;

б) 2AI + 6HCl = 2AICl3 + 3H2↑

-концентрированной серной кислотой

Взаимодействие алюминия с концентрированной серной кислотой в обычных условиях, а также низких температурах не происходит вследствие эффекта, называемого пассивацией.

При нагревании реакция возможна и приводит к образованию сульфата алюминия, воды и сероводорода, который образуется в результате восстановления серы, входящей в состав серной кислоты:

Такое глубокое восстановление серы со степени окисления +6 (в H2SO4) до степени окисления -2 (в H2S) происходит благодаря очень высокой восстановительной способности алюминия.

— концентрированной азотной кислотой

Концентрированная азотная кислота в обычных условиях также пассивирует алюминий, что делает возможным ее хранение в алюминиевых емкостях.

Так же, как и в случае с концентрированной серной, взаимодействие алюминия с концентрированной азотной кислотой становится возможным при сильном нагревании, при этом преимущественно протекает реакция:

— разбавленной азотной кислотой

Взаимодействие алюминия с разбавленной по сравнению с концентрированной азотной кислотой приводит к продуктам более глубокого восстановления азота. Вместо NO в зависимости от степени разбавления могут образовываться N2O и NH4NO3:

8Al + 30HNO3(разб.) = 8Al(NO3)3 +3N2O↑ + 15H2O

8Al + 30HNO3(оч. разб) = 8Al(NO3)3 + 3NH4NO3 + 9H2O

со щелочами

Алюминий реагирует как с водными растворами щелочей:

2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H2↑

так и с чистыми щелочами при сплавлении:

В обоих случаях реакция начинается с растворения защитной пленки оксида алюминия:

Аl2О3 + 2NaOH + 3H2O = 2Na[Al(OH)4]

Аl2О3 + 2NaOH = 2NaAlO2 + Н2О

В случае водного раствора алюминий, очищенный от защитной оксидной пленки, начинает реагировать с водой по уравнению:

2Al + 6H2O = 2Al(OH)3 + 3H2↑

Образующийся гидроксид алюминия, будучи амфотерным, реагирует с водным раствором гидроксида натрия с образованием растворимого тетрагидроксоалюмината натрия:

Al(OH)3 + NaOH = Na[Al(OH)4]

Источник: https://scienceforyou.ru/teorija-dlja-podgotoi-k-egje/himicheskie-svojstva-aljuminija

Пассивирование металла: назначение, технология, методы

Несмотря на то, что нержавеющая сталь отличается высокой устойчивостью к коррозии, дополнительная защита, которую позволяет получить такая технологическая операция, как пассивация, для нее желательна. В отдельных случаях, когда большому риску развития коррозии подвержены даже изделия, изготовленные из нержавеющей стали, необходимость в выполнении такой процедуры не вызывает сомнений.

Примеры нержавеющих поверхностей, подвергнутых коррозии, и результаты проведенной пассивации

Читайте также  Можно ли паять алюминий с медью?

Чем обусловлена высокая коррозионная устойчивость нержавеющих сталей

Суть такого явления, как коррозия, состоит в том, что поверхность металла под воздействием негативных внешних факторов и окружающей среды начинает разрушаться.

Что характерно, коррозия из-за постоянного окисления поражает металл слой за слоем, постепенно разрушая внутреннюю структуру стали.

Во многих случаях локализовать пораженные участки внутренней структуры металла уже не имеет смысла, поэтому стальные изделия приходится заменять на новые.

Пассивирование (или пассивация) как технология, позволяющая обеспечить надежную защиту стали от коррозии, лежит в основе создания такого уникального металла, каким является нержавеющая сталь. В химическом составе преимущественного большинства сталей, относящихся к нержавеющей категории, могут содержаться различные элементы:

  • никель;
  • молибден;
  • кобальт;
  • ниобий;
  • марганец.

Однако основным легирующим элементом таких сталей, количество которого в их составе может варьироваться в пределах 12–20%, является хром.

Добавление различных легирующих элементов в состав нержавеющих сталей позволяет придать им требуемые физико-химические характеристики, но именно хром отвечает за коррозионную устойчивость стального сплава.

Влияние хрома на свойства нержавеющей стали

Нержавеющие стальные сплавы, в составе которых содержится 12% хрома, проявляют высокую коррозионную устойчивость только при взаимодействии с окружающим воздухом.

Если количество хрома в химическом составе нержавеющей стали увеличить до 17%, то изделия из нее смогут спокойно взаимодействовать с азотной кислотой, не утрачивая при этом своих эксплуатационных характеристик.

Чтобы сделать металл устойчивым к еще более агрессивным средам, к числу которых относятся соляная, серная и другие кислоты, в нем не только увеличивают количественное содержание хрома, но и добавляют в его состав такие элементы, как медь, молибден, никель и др. Иными словами, выполняют пассивирование металла, то есть увеличивают его пассивность к коррозионным процессам.

В процессе пассивации зоны сварочного шва образуется прочная пленка

Пассивация, при которой в химический состав нержавеющей стали добавляют соответствующие легирующие элементы, – это не единственное условие высокой коррозионной устойчивости металла.

Чтобы защитные свойства нержавеющей стали оставались на высоком уровне, оксидная пленка на ее поверхности, состоящая преимущественно из оксида хрома, должна быть целой, иметь однородный химический состав и толщину.

Причины возникновения коррозии

Несмотря на то, что в химическом составе нержавеющей стали должны содержаться пассиваторы, значительно повышающие ее коррозионную устойчивость, ее поверхность и внутренняя структура могут подвергаться коррозии.

Основной причиной, по которой нержавеющая сталь начинает разрушаться, является недостаточное или неравномерное содержание в ее химическом составе хрома.

Источник: https://steelfactoryrus.com/passivatsiya-alyuminiya-azotnoy-kislotoy/

Опыт 7: Пассивация алюминия

Пассивация алюминия азотной кислотой

Впробирку поместить кусочек алюминия иприлить 2 –3 млконцентрированной азотной кислоты.Через 3 – 4минуты кислоту слить, промыть металлводой и подействовать на него растворомсоляной кислоты. Почему теперь алюминийне растворяется в соляной кислоте?

Опыт8: Протекторнаязащита металла.

Вдве пробирки налейте (1/2объема) 0,4 Мраствора уксусной кислоты и добавьтев каждую несколько капель раствораиодида калия. В одну пробирку поместитепластинку свинца, а в другую пластинкусвинца, соединенную с цинковой пластинкой.Наблюдайте, в какой из пробирок быстреепоявится желтое окрашивание.

Объяснитенаблюдаемые явления. Приведите схемыкатодного и анодного процессов, составьтесхемы коррозионных элементов.

15.3 Необходимый уровень подготовки студентов

  1. Знать, что называется коррозией металлов, какие существуют ее виды, в чем их отличие.

  2. Знать причины возникновения коррозионных микрогальванических элементов, что такое коррозия с водородной и кислородной деполяризацией.

  3. Уметь писать уравнения анодных и катодных процессов, протекающих при электрохимической коррозии.

  4. Иметь представление о методах защиты металлов от коррозии.

15.4 Задания для самоконтроля

  1. Что называют коррозией металлов?

  2. Какие виды коррозии вы знаете?

  3. В чем отличие электрохимической коррозии от химической?

  4. Чем вызвана электрохимическая неоднородность поверхности металла?

  5. Каковы причины возникновения коррозионных микрогальванических элементов?

  6. Возможна ли коррозия с выделением водорода в растворе, в котором активность Cu2+ равна 10-3 моль/л и рН среды равен 3?

  7. Возможна ли коррозия меди с поглощением кислорода на воздухе в растворе, в котором активность Cu2+ равна 10-4моль/л, а среда нейтральна?

  8. Как можно снизить скорость коррозии металлов?

  9. Какие защитные покрытия вам известны, и какими методами их получают?

  10. Что такое анодные и катодные защитные покрытия?

  11. Какие вещества называют ингибиторами коррозии?

Лабораторная работа №16 Тема: Криоскопический метод определения молекулярной массы растворенного вещества

Цельработы:определение молекулярных масскриоскопическим методом.

Оборудованиеи реактивы:прибор для определения молекулярноймассы криоскопическим методом (рис. 1):пробирка с боковым отростком, широкаяпробирка, толстостенный стакан, термометрБекмана, мешалки, крышка; аналитическиевесы с разновесом, мерный цилиндр,шпатель, снег (толченый лед) и хлориднатрия для охладительной смеси, бюкс с1,2-1,5 гмочевины, дистиллированная вода.

16.1 Теоретические пояснения

Приобразовании растворов характервзаимодействия компонентов определяетсяих химической природой, что затрудняетвыявление общих закономерностей. Поэтомуудобно прибегнуть к некоторойидеализированной модели раствора. Такой раствор, образование которого несвязано с тепловым эффектом и с изменениемобъема называют идеальнымраствором.

Хотябольшинство растворов и не обладает вполной мере свойствами идеальных, однакосвойства многих из них могут быть описаныпри помощи этой модели. Наиболееподходящими в этом плане являютсяразбавленные растворы, в которыхсодержание растворенного веществаочень мало по сравнению с содержаниемрастворителя.

Рассмотримсвойства разбавленных растворов, которыезависят от числа частиц растворенноговещества и от количества растворителя,но практически не зависят от природырастворенных частиц (коллигативныесвойства).

Ктаким свойствам относятся: понижениедавления насыщенного пара растворителянад раствором, повышение температурыкипения, понижение температуры замерзанияраствора по сравнению с чистымрастворителем, осмотическое давление.

Согласнозакону Рауля, относительноепонижение давления насыщенного паранад раствором равно мольной долерастворенного нелетучего вещества:

Повышениетемпературы кипения и понижениетемпературы замерзания растворов посравнению с чистым растворителем, последствию из закона Рауля прямопропорциональнымоляльной концентрации растворенноговещества:

где-изменение температуры,-моляльная концентрация (моль/кг),-коэффициент пропорциональности, вслучае повышения температуры кипенияназывается эбулиоскопической константой,а для понижения температуры замерзания– криоскопической. Эти константы,численно различные для одного и тогоже растворителя, характеризуют повышениетемпературы кипения и понижениетемпературы замерзания одномоляльногораствора, т.е.

при растворении 1 мольэлектролита в 1000 г растворителя. Поэтомуих часто называют моляльным повышениемтемпературы кипения и понижениемтемпературы замерзания раствора.Криоскопические и эбулиоскопическиеконстанты не зависят от природырастворенного вещества, а лишь зависятот природы растворителя и характеризуютсяразмерность.

Ниже приведены криоскопическиеи эбулиоскопическиеконстантыдля некоторых растворителей:

Растворитель Температура, С Константа,
Кипения Плавления
Н2О 100 0,52 1,86
С6Н6 80,1 5,5 2,53 5,12
ССI4 76,5 -22 5,03 30,0
СНСI3 61,7 -63,5 3,63 4,7

Криоскопияи эбулиоскопия – методы определениямолекулярных масс растворенных веществ.Эти методы позволяют определитьмолекулярную массу не диссоциирующихпри растворении веществ по понижениютемпературы замерзания и по повышениютемпературы кипения растворов известнойконцентрации:

где-масса растворенного вещества в граммах,-масса растворителя в граммах,-молярная масса растворенного веществавг/моль,1000- коэффициент пересчета от граммоврастворителя к килограммам. Из (1) молярнаямасса неэлектролита выразится как:

Источник: https://studfile.net/preview/6012257/page:36/

2.2.3. Характерные химические свойства алюминия

Пассивация алюминия азотной кислотой

Алюминий — амфотерный металл. Электронная конфигурация атома алюминия 1s22s22p63s23p1. Таким образом, на внешнем электронном слое у него находятся три валентных электрона: 2 — на 3s- и 1 — на 3p-подуровне. В связи с таким строением для него характерны реакции, в результате которых атом алюминия теряет три электрона с внешнего уровня и приобретает степень окисления +3. Алюминий является высокоактивным металлом и проявляет очень сильные восстановительные свойства.

Читайте также  Как припаять провод к алюминию?

Коррозия алюминия на воздухе (атмосферная коррозия алюминия)

Алюминий при взаимодействии с воздухом переходит в пассивное состояние. При соприкосновении чистого металла с воздухом на поверхности алюминия мгновенно появляется тонкая защитная пленка оксида алюминия. Далее рост пленки замедляется. Формула оксида алюминия – Al2O3 либо Al2O3•H2O.

Реакция взаимодействия алюминия с кислородом:

Толщина этой оксидной пленки составляет от 5 до 100 нм (в зависимости от условий эксплуатации). Оксид алюминия обладает хорошим сцеплением с поверхностью, удовлетворяет условию сплошности оксидных пленок. При хранении на складе, толщина оксида алюминия на поверхности металла составляет около 0,01 – 0,02 мкм. При взаимодействии с сухим кислородом – 0,02 – 0,04 мкм. При термической обработке алюминия толщина оксидной пленки может достигать 0,1 мкм.

Алюминий достаточно стоек как на чистом сельском воздухе, так и находясь в промышленной атмосфере (содержащей пары серы, сероводород, газообразный аммиак, сухой хлороводород и т.п.). Т.к. на коррозию алюминия в газовых средах не оказывают никакого влияния сернистые соединения – его применяют для изготовления установок переработки сернистой нефти, аппаратов вулканизации каучука.

Коррозия алюминия в воде

Коррозия алюминия почти не наблюдается при взаимодействии с чистой пресной, дистиллированной водой. Повышение температуры до 180 °С особого воздействия не оказывает. Горячий водяной пар на коррозию алюминия влияния также не оказывает. Если в воду, даже при комнатной температуре, добавить немного щелочи – скорость коррозии алюминия в такой среде немного увеличится.

Взаимодействие чистого алюминия (не покрытого оксидной пленкой) с водой можно описать при помощи уравнения реакции:

При взаимодействии с морской водой чистый алюминий начинает корродировать, т.к. чувствителен к растворенным солям. Для эксплуатации алюминия в морской воде в его состав вводят небольшое количество магния и кремния. Коррозионная стойкость алюминия и его сплавов, при воздействии морской воды, значительно снижается, если в состав метала будет входить медь.

Коррозия алюминия в кислотах

С повышением чистоты алюминия его стойкость в кислотах увеличивается.

Коррозия алюминия в серной кислоте

Для алюминия и его сплавов очень опасна серная кислота (обладает окислительными свойствами) средних концентраций. Реакция с разбавленной серной кислотой описывается уравнением:

Концентрированная холодная серная кислота не оказывает никакого влияния. А при нагревании алюминий корродирует:

При этом образуется растворимая соль – сульфат алюминия.

Al стоек в олеуме (дымящая серная кислота) при температурах до 200 °С. Благодаря этому его используют для производства хлорсульфоновой кислоты (HSO3Cl) и олеума.

Коррозия алюминия в соляной кислоте

В соляной кислоте алюминий или его сплавы быстро растворяются (особенно при повышении температуры). Уравнение коррозии:

Аналогично действуют растворы бромистоводородной (HBr), плавиковой (HF) кислот.

Коррозия алюминия в азотной кислоте

Концентрированный раствор азотной кислоты отличается высокими окислительными свойствами. Алюминий в азотной кислоте при нормальной температуре исключительно стоек (стойкость выше, чем у нержавеющей стали 12Х18Н9). Его даже используют для производства концентрированной азотной кислоты методом прямого синтеза

При нагревании коррозия алюминия в азотной кислоте проходит по реакции:

Коррозия алюминия в уксусной кислоте

Алюминий обладает достаточно высокой стойкостью к воздействию уксусной кислоты любых концентраций, но только если температура не превышает 65 °С. Его используют для производства формальдегида и уксусной к-ты. При более высоких температурах алюминий растворяется (исключение составляют концентрации кислоты 98 – 99,8%).

В бромовой, слабых растворах хромовой (до10%), фосфорной (до 1%) кислотах при комнатной температуре алюминий устойчив.

Слабое влияние на алюминий и его сплавы оказывают лимонная, масляная, яблочная, винная, пропионовая кислоты, вино, фруктовые соки.

Щавелевая, муравьиная, хлорорганические кислоты разрушают металл.

На коррозионную стойкость алюминия очень сильно влияет парообразная и капельножидкая ртуть. После недолгого контакта металл и его сплавы интенсивно корродируют, образуя амальгамы.

Коррозия алюминия в щелочах

Щелочи легко растворяют защитную оксидную пленку на поверхности алюминия, он начинает реагировать с водой, в результате чего металл растворяется с выделением водорода (коррозия алюминия с водородной деполяризацией).

Читать еще:  Гравировка на алюминии своими руками

Также оксидную пленку разрушают соли ртути, меди и ионы хлора.

Технология пассивации металла, виды и составы

Пассивация — это формирование на поверхности металла тонких оксидных или солевых пленок, которые защищают его от внешней коррозии. Такое покрытие препятствует контакту металла с кислородом и агрессивными средами. При пассивировании защитные пленки могут образовываться на металлической поверхности как естественным, так и искусственным путем.

В первом случае они состоят из оксидов химических элементов, входящих в состав самого металла, а во втором могут включать в себя оксиды и соли других химических элементов. Например, чистый алюминий естественным способом образует очень стойкую оксидную пленку, поэтому устойчив к большинству видов коррозии.

А вот изделия из его сплавов, содержащих химически активные компоненты, уже нуждаются в искусственной коррозионной защите и поэтому подвергаются пассивированию в солевых растворах.

Пассивацию широко применяют для защиты поверхностей изделий из стали, меди, никеля, алюминия и их сплавов. Даже защитные цинковые и кадмиевые покрытия пассивируют солями хрома для повышения их коррозионной и механической стойкости. Пассивирование металла вызывает образование на его поверхности слоя оксидов или солей толщиной в несколько микрон, что практически не влияет на геометрические размеры изделий. С другой стороны, такие пленки могут снижать контактную проводимость основного материала, но, как правило, в меньшей степени, чем слой корродированного металла.

Суть и описание процесса пассивации металла

При пассивировании поверхности металлических изделий обрабатывают растворами химических соединений, обладающих окислительными свойствами. В этой роли чаще всего выступают кислоты, нитриты и растворы солей хрома (реже — молибдена). Нанесение раствора на поверхность металлических заготовок производится методом погружения или вручную, с помощью специального оборудования. Применяемые при пассивировании растворы обычно состоят из основного реагента и нескольких добавок, ускоряющих и стабилизирующих процесс пассивации.

В общем виде процесс пассивирования состоит из следующих этапов:

  1. Механическая очистка поверхностей изделия.
  2. Химическое обезжиривание в растворе едкого натра и кальцинированной соды.
  3. Промывка в проточной горячей, а затем холодной воде.
  4. Пассивирование в течение заданного времени.
  5. Нейтрализация в растворе кальцинированной соды.
  6. Промывка путем многократного погружения в проточную холодную воду.
  7. Сушка в сушильном шкафу или обдувом теплого воздуха.
  8. Контроль качества поверхности после пассивирования производится визуальным или инструментальным способом. При неудовлетворительном результате процесс пассивирования повторяется, начиная с п. 1.

В приведенном примере описан технологический процесс пассивации с использованием стационарного производственного оборудования. Для пассивирования поверхностей изделий на месте их установки применяют ручные приводные инструменты и приспособления (см. фото ниже).

Читайте также  Как варить алюминий инвертором без аргона?

Свойства пассивированного металла и его применение

После пассивации на поверхности металла образуется устойчивый к коррозии слой, который в случае применения хроматов к тому же имеет повышенную механическую прочность. Некоторые металлы и сплавы склонны к естественной пассивации. Это особенно характерно для алюминия и нержавеющей стали с присутствием хрома.

Но в случае нарушения структуры и химического состава поверхностного слоя они также могут подвергаться коррозии. При пассивировании нержавеющей стали для создания стойкой поверхностной защиты используется ее собственный хром, который, соединяясь с кислородом, образует плотную оксидную пленку.

Все изделия из нержавеющей стали, работающие в агрессивных средах, заранее подвергаются пассивации, что помогает избежать (или отсрочить) их коррозию.

Пассивация железа и его сплавов в виде конструкционных и специальных сталей обычно проводится по покрытию из никеля, цинка или кадмия с использованием солей хрома.

Такое пассивирование укрепляет поверхностный слой и позволяет эксплуатировать стальные изделия в течение длительного периода без опасности коррозии, а в случае ее проявления обрабатывать только пораженные участки.

Пассивирование меди и ее сплавов (бронзы и латуни) выполняется как в защитных, так и в декоративных целях с применением хроматных растворов. В этом случае на поверхности медного изделия образуется тонкая прозрачная пленка, предохраняющая металл от окисления и сохраняющая его товарный вид.

Пассивирование серебра проводят для этих же целей с применением аналогичных технологий.

Виды пассивирования

По методу нанесения покрытия пассивирование бывает двух видов: химическое и электрохимическое. Кроме того, разновидности этой технологии классифицируют по типу химического элемента, из соединений которого образуется поверхностная пленка (хроматирование, никелирование, молибденирование и другие). Кроме того, выделяют естественную пассивацию — процесс образования защитного слоя у ряда металлов и сплавов под воздействием атмосферного и растворенного в воде кислорода.

Химическое

Химическое пассивирование происходит в результате притяжения отрицательных ионов растворенных в воде солей к поверхности металла, атомы которого имеют положительный потенциал. Для этого металлические изделия, предварительно очищенные и обезжиренные, помещаются в специальную ванну, заполненную соответствующим раствором.

Основным компонентом в таком электролите является соль металла, образующего защитную пленку на поверхности изделия. Химическая пассивация также может выполняться по месту установки изделия.

В этом случае все процессы, начиная от очистки и заканчивая пассивацией, нейтрализацией и обмывкой, выполняются вручную с помощью специального оборудования.

Электрохимическое

Электрохимическая пассивация основана на принципах гальванотехники. В этом случае металлические заготовки также помещаются в ванну с электролитом, но осаживание пассивирующего слоя происходит не в пассивном режиме, а под воздействием тока, протекающего через электролитический раствор.

При такой пассивации положительный потенциал подается на заготовку, а отрицательный — на корпус ванны. При использовании электрохимического способа защитная пленка образуется быстрее и получается более ровной. Но такая технология дороже химической пассивации, т. к.

в ней применяется более сложное оборудование и происходит расход электроэнергии.

Читать еще:  Как правильно плавить алюминий

составов для пассивации

В состав растворов для пассивации цветных металлов в качестве основного реагента чаще всего входят хроматы калия и натрия, а также хромовый ангидрид. Для создания кислой среды в такие электролиты добавляют различные кислоты и соли, состав которых влияет на скорость создания и равномерность защитной пленки.

Пассивирование меди проводят в растворах, содержащих в небольших количествах серную кислоту. При обработке алюминия в состав электролитов включают фосфорную кислоту, а для пассивации цинка и кадмия используют добавки в виде азотной и серной кислот.

пассивирующих растворов для обработки изделий из стали зависит от их состава и часто включает в себя азотную кислоту и ее соли.

Все соли хрома (особенно шестивалентного) очень токсичны. Поэтому проводить хромовую пассивацию металлических изделий можно только на специализированных производствах, имеющих соответствующие системы очистки и водоотведения, а также специально обученный персонал.

Источник: http://stalcu.ru/alyuminij/passivatsiya-alyuminiya-azotnoj-kislotoj.html

Пассивация и уход за нержавеющей сталью пивоваренного оборудования

Несмотря на свою идеальную репутацию в качестве металла для производства пива, нержавеющая сталь может вызвать коррозию или ржавчину. Поэтому на этой неделе мы взглянем на то, как и почему нержавеющая сталь может корродировать, а также, как вы сможете пассивировать свою нержавеющую сталь пивоваренного оборудования для ее защиты.

Нержавеющая сталь и ржавчина

Сталь изготавливается ​​из сплава железа и углерода, а углерод составляет всего лишь пол или чуть более процента в ее составе. Для сравнения, нержавеющая сталь производится из железа и хрома. Хрома же содержится примерно 10-30% в составе стали, и он является важным элементом, который делает нержавеющую сталь устойчивой к коррозии.

Хром в нержавеющей стали очень быстро реагирует с кислородом, и фактически образует защитный слой оксида хрома на поверхности стали. Этот оксид хрома предотвращает образование ржавчины и коррозии. Однако, если слой хрома по какой-либо причине нарушится, то железо в сталь могут фактически начать корродировать и ржаветь.

Ваше нержавеющее пивоваренное оборудование в основном очень устойчиво к коррозии. Тем не менее, если вы воздействуете на него хлорной известью или другими отбеливающими чистящими средствами, поцарапаете его, чрезмерно почистите, или воздействуете обычными ржавеющими стальными губками или оставите в контакте с обычной сталью, то это может повредить защитный слой. Отбеливающими средствами можно удалить защитный слой полностью.

Чрезмерная чистка, особенно со стальными губками также может подрывать ваш окислительный слой. Важно хранить обыкновенную сталь там же, где и обычные ведра, инструменты и некоторые виды оборудования отличающие от вашего оборудования из нержавеющей стали. Железо из обычной стали стремиться повредить нержавеющую сталь (свойство железа) и разрушить окислительный слой.

Не складывайте обычные стальные ведра, смешанные металлические инструменты или оборудование в ваш нержавеющей котел после варки.

Пассивация нержавеющей стали с целью ее защиты

Во время изготовления продукции из нержавеющей стали, как правило, ее погружают в ванну с азотной кислотой в конце производственного процесса для удаления загрязняющих веществ. Кислота также активирует процесс окисления хрома в воздухе, который называется пассивации, где во время взаимодействия кислорода с хромом образуется защитный слой оксида хрома. Пассивация происходит очень быстро — как правило, в течение 20 минут.

Сейчас некоторое нержавеющее пивоваренное оборудование, в частности, из нержавеющих материалов с более низкой стоимостью, скорее всего, было обработано, проштамповано, протравлено, отполировано и заварено лишь после того, как нержавеющая сталь была изготовлена ​​и промыта кислотой. В результате оно может иметь масла, полировальные составы, сварочные соединения и другие загрязняющие вещества, которые защищают сталь, но должны быть смыты с первого раза, когда вы очищаете ваши детали. К тому же, вы, вероятно, не захотите обнаружить эти масла и соединения в своем пиве.

Источник: https://respect-kovka.com/passivatsiya-alyuminiya-azotnoy-kislotoy/